1. 如何理解拉格
拉格朗日(Lagrange)余項: ,其中θ∈(0,1)。 拉格朗日余項實際是泰勒公式展開式與原式之間的一個誤差值,如果其值為無窮小,則表明公式展開足夠準確。 證明: 根據柯西中值定理: 其中θ1在x和x0之間;繼續使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續使用n+1次后得到: 其中θ在x和x0之間;同時: 進而: 綜上可得:
2. 如何理解拉格朗日中值定理
把拉格朗日定理移項,得f(x)-[f(b)-f(a)]/(b-a)*(x-a)=0,令u(x)等于等號左邊的函數。
于是有u(a)=u(b)=f(a),這就滿足了羅爾定理。
羅爾定理是:在[a,b]上滿足u(a)=u(b)時,一定存在m屬于(a,b)使u(x)的導數等于0。
這些條件現在都滿足了,而且對u(x)求導后,經過簡單移項,立刻就可得到拉格朗日中值定理的式子。羅爾定理是拉格朗日中值定理在f(a)=f(b)時的特殊情況。
3. 如何理解拉格?
菲拉格慕包nfc,可通過nfc設備掃描讀寫信息,以鑒別真偽
4. 如何理解拉格朗日函數
在分析力學里,一個動力系統的 拉格朗日函數,是描述整個物理系統的動力狀態的函數,對于一般經典物理系統,通常定義為動能減去勢能,以方程表示為
拉格朗日函數
拉格朗日函數
拉格朗日函數
拉格朗日函數
其中, 為拉格朗日量, 為動能, 為勢能。
在分析力學里,假設已知一個系統的拉格朗日函數,則可以將拉格朗日量直接代入拉格朗日方程,稍加運算,即可求得此系統的運動方程。
5. 如何理解拉格朗日乘子法
拉格朗日乘子法或者叫拉格朗日數乘法求解條件極值!
所謂條件極值就是說在約束條件的作用下求出的極值,使用拉格朗日乘子法后,將約束條件和原方程組合成一個新的方程,即將約束條件內化到方程里
不位于定義域的點當然不可能是極值點了。
求完駐點后,再看邊界時,可以用Lagrange乘子法求解。
就是定義F(x,s)=f(x)+sg(x),其中s是乘子。然后求F(x,s)的駐點,然后逐點判斷
驗證就可以了。
6. 如何理解拉格朗日乘數法
拉格郎日乘數法的適用條件是乘數不等于0。
求最值(最值是某個區間的最大或最小,注意最大/最小可能有同值的多個,所以也不唯一哈,極值是一個小范圍,很小很小,內的最值).因為最值總是發生在極值點+區間邊界點+間斷點處,所以可以用拉朗乘數求出極值,用邊界和間斷點極限求出可疑極值,比較他們的大小,就可以找到區間內的最值了.特別地,若函數在區間內用拉朗求出僅一個極值,切很易判定沒有其他可疑極值點,就可以直接判斷那個極值是最值;或者可以判斷函數在所給區間內單調(比如exp(x^2+y^2)在(x>0,y>0)時單調遞增),就不用求極值(因為沒有),直接求區間邊界(或者間斷點,有間斷點也可以單調的)作為最值。
7. 如何理解拉格朗日插值的原理
關于代數方程的求解,從16世紀前半葉起,已成為代數學的首要問題,一般的三次和四次方程解法被意大利的幾位數學家解決.在以后的幾百年里,代數學家們主要致力于求解五次乃至更高次數的方程,但是一直沒有成功.對于方程論,拉格朗日比較系統地研究了方程根的性質(1770),正確指出方程根的排列與置換理論是解代數方程的關鍵所在,從而實現了代數思維方式的轉變.盡管拉格朗日沒能徹底解決高次方程的求解問題,但是他的思維方法卻給后人以啟示
8. 如何理解拉格朗日插值法
拉格朗日乘數原理(即拉格朗日乘數法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數 z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對x的偏導=0
f對y的偏導=0
f對k的偏導=0
解上述三個方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數原理在工程中有廣泛的應用,以上只簡單地舉一例,更復雜的情況(多元函數,多限制條件)可參閱高等數學教材。
9. 如何理解拉格朗日插值
構造函數4a+b+m(a^2+b^2+c^2-3)
對函數求偏導并令其等于0
4+2ma=0
1+2mb=0
2mc=0
同時a^2+b^2+c^2=3
所以
m=根號17/2根號3
a=-4根號3/根號17
b=-根號3/根號17
4a+b=-根號51
1、是求極值的,不是求最值的
2、如果要求最值,要把極值點的函數值和不可導點的函數值還有端點函數值進行比較
3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數再看
10. 如何理解拉格朗日余項
拉格朗日(Lagrange)余項: ,其中θ∈(0,1)。 拉格朗日余項實際是泰勒公式展開式與原式之間的一個誤差值,如果其值為無窮小,則表明公式展開足夠準確。 證明: 根據柯西中值定理: 其中θ1在x和x0之間;繼續使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續使用n+1次后得到: 其中θ在x和x0之間;
11. 如何理解拉格朗日方程
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。